5(x+5)=40x+5(x^2+11)

Simple and best practice solution for 5(x+5)=40x+5(x^2+11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(x+5)=40x+5(x^2+11) equation:



5(x+5)=40x+5(x^2+11)
We move all terms to the left:
5(x+5)-(40x+5(x^2+11))=0
We multiply parentheses
5x-(40x+5(x^2+11))+25=0
We calculate terms in parentheses: -(40x+5(x^2+11)), so:
40x+5(x^2+11)
We multiply parentheses
5x^2+40x+55
Back to the equation:
-(5x^2+40x+55)
We get rid of parentheses
-5x^2+5x-40x-55+25=0
We add all the numbers together, and all the variables
-5x^2-35x-30=0
a = -5; b = -35; c = -30;
Δ = b2-4ac
Δ = -352-4·(-5)·(-30)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-25}{2*-5}=\frac{10}{-10} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+25}{2*-5}=\frac{60}{-10} =-6 $

See similar equations:

| 7^2x=7^x+1+18 | | 12-5h=h+h | | 12-5h=h=h | | 15x-25=35 | | 3x+x-8=120 | | 38=10-4x | | 2x-x+10=45 | | 24=2x-50 | | 1/7(40-x)=-x | | 8x-206=106 | | -2x+4=2(x+2) | | 5x-4x=-12 | | -3=v+5-2 | | 6x-3+4=5 | | 8=2(b+-1) | | 25-2x=29 | | 3x+211=100 | | 30=-3x-(-3) | | -39=-x/3 | | 4/3=12/7x+4 | | (4+8)x12=102-42 | | t−14-4=-1 | | 5-4-x=-x+4 | | (4+8)x12=102+42 | | 3w-9=33 | | 14x-6=92 | | (4+8)x12=102+246 | | 21=w/4+15 | | (4+8)x12=102+38 | | x/5+16=19 | | 20-2x=10x-4 | | ⅑(2m-16)=⅓(2m+4) |

Equations solver categories